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1 p-adic Frobenius structure for ordinary differential equations

1.1 Equivalence of differential systems

Let K ⊃ C(t) be a differential field. That is, a field with the derivation d
dt : K → K which extends the usual

derivation on the field of rational functions C(t). Take two matrices A,B ∈ C(t)n×n and consider linear
differential systems

(I)
dU

dt
= AU and (II)

dV

dt
= BV.
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Definition 1. We say that (II) is equivalent to (I) over K if there exists a matrix H ∈ GLn(K) such that

dH

dt
= AH −HB. (1)

Notation: (2) ∼K (1).

Note that this relation is symmetric because H−1 will satsfy (1) with the roles of A and B interchanged.
We first make formal algebraic observations about the meaning of this differential equation:

(i) If V is a vector solution to (2) with entries in a possibly bigger field, then U = HV is a vector solution
to (1):

dU

dt
=

d

dt
(HV ) = (AH −HB)V +HBV = AHV = AU.

(ii) If U, V are fundamental matrices of solutions to (1) and (2) respectively, then Λ = U−1HV is a constant
matrix:

d

dt

(
U−1HV

)
= (−U−1A)HV + U−1(AH −HB)V + U−1HBV = 0.

Example 2 (local study / Fuchsian theory of regular singularities). Let A ∈ C(t)n×n with no pole at t = 0.
Let O be the ring of germs of holomorphic functions near t = 0 and K = O[t−1] be the field of germs of
meromorphic functions. Then there exists a constant matrix Γ ∈ Cn×n such that

dU

dt
=
A(t)

t
U ∼K dV

dt
=

Γ

t
V.

Differential systems of this kind are either regular or regular singular at t = 0, which means that their
solutions have moderate growth on approach to this point (see [8, Theorem 1.3.1]). Note that V = tΓ is a
fundamental solution matrix of the second system and M0 = exp(2πiΓ) is its monodromy around t = 0.Since
elemnts of K are single-valued at t = 0 (have trivial monodromy), local monodromy matrices of two equivalent
systems are conjugate by an element of GLn(C). Two such systems of this kind (regular or regular singular)
are equivalent over K if and only if their local monodromy matrices M0 are conjugate by an element of
GLn(C) ([8, Corollary 1.3.2]).

1.2 p-adic analytic elements

Let p be a prime number. The Gauss norm on Q[t] is defined as

|a0 + a1t+ . . .+ ant
n|G = max

0≤i≤n
|ai|p.

It satisfies the properties

• |f + g|G ≤ max(|f |G , |g|G) (non-Archimedean triangle inequality);

• |f · g|G = |f |G · |g|G (Gauss’ lemma).

This non-Archimedean norm extends uniquely to the field of rational functions Q(t) preserving the properties
(i)-(ii). In particular, for a ratio of two polynomials one has∣∣∣∣∣

∑
i ait

i∑
j bjt

j

∣∣∣∣∣
G

=
maxi |ai|p
maxj |bj |p

.

With the Gauss norm Q(t) becomes an incomplete discretely valued field.

Definition 3. The field of p-adic analytic elements Ep is the completion of Q(t) with respect to the Gauss
norm.

Elements of Ep are p-adic limits of rational functions. One class of examples is given by series
∑∞

n=0 ant
n

with |an|p → 0 as n→ ∞. We will encounter more sophisticated examples below.
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Proposition 4. The following operations on Q(t) are continuous with respect to the Gauss norm:

(i) Frobenius endomorphism f(t) 7→ f(tp),

(ii) derivation d
dt .

Proof. Property |f(tp)|G = |f(t)|G follows immediately from the definition of the Gauss norm. For (ii) we
note that for f =

∑
i ait

i ∈ Q[t] one has |f ′|G = maxi |i ai|p ≤ maxi |ai|p = |f |G . With this we can make the
conclusion for the ratio of two polynomials:∣∣∣ d

dt

(
f

g

) ∣∣∣
G
=
∣∣∣f ′g − g′f

g2

∣∣∣
G
=

|f ′g − g′f |G
|g|2G

≤ max(|f ′g|G , |g′f |G)
|g|2G

≤ |f |G · |g|G
|g|2G

=
∣∣∣f
g

∣∣∣
G
.

Hence we can conclude that both Frobenius endomorphism and derivation extend to the field Ep.

1.3 p-adic Frobenius structure

Let A ∈ Q(t)n×n. Observe that if U(t) is a solution to dU
dt = AU then V (t) = U(tp

h

) is a solution of
dV
dt = phtp

h−1A(tp
h

)V .

Definition 5. A p-adic Frobenius structure of period h for the differential system dU
dt = AU is a matrix

Φ ∈ GLn(Ep) satisfying the differential equation

dΦ(t)

dt
= A(t)Φ(t)− phtp

h−1Φ(t)A(tp
h

). (2)

When h = 1 we simply call Φ a p-adic Frobenius structure

Example 6. Consider dU
dt = 1

2
1

1−tU . The unique solution is given by U(t) = 1√
1−t

. In the view of prop-

erty (ii) from § 1.1, existence of a p-adic Frobenius structure for a system of rank 1 is equivalent to the fact
that Φ(t) = U(t)/U(tp) is a p-adic analytic element. Let us check that this is indeed the case for our system
when p ̸= 2. We first perform a formal computation:

U(t)

U(tp)
=

√
1− tp

1− t
= (1− t)

p−1
2

√
1− tp

(1− t)p
= (1− t)

p−1
2

(
1 +

p g(t)

(1− t)p

)1/2

with g(t) =
1− tp − (1− t)p

p

= (1− t)
p−1
2

∞∑
k=0

(
1/2

k

)
pk

g(t)k

(1− t)p k
.

Here for k ≥ 2 we have(
1/2

k

)
=

(1/2)(1/2− 1) . . . (1/2− (k − 1))

k!
= (−1)k−1 1 · 3 · . . . · (2k − 3)

2kk!

= (−1)k−1 (2k − 3)!

22k−2k!(k − 2)!
= (−1)k−1 1

22k−2(2k − 2)

(
2k − 2

k

)
,

from which it clearly follows that the p-adic valuation of
(
1/2
k

)
pk grows infinitely as k → ∞. Thus the partial

sums of the series representation we computed above will give a Cauchy sequence with respect to the Gauss
norm. It limit will represent Φ(t) = U(t)/U(tp) as an element of Ep.

Now we would like to mention several facts about p-adic convergence of solutions of differential systems.
The reader may prove the following proposition as an exercise, or consult [19] where this fact is proved in a
more general context.

Proposition 7 (p-adic Cauchy theorem, Élisabeth Lutz). Suppose the entries of A ∈ QpJtKn×n have a
positive radius of p-adic convergence. Then there exists an invertible matrix U ∈ GLn(QpJtK) such that
dU
dt = AU . This matrix is unique up to multiplication from the right by constant invertible matrices C ∈
GLn(Qp) and entries of U have a positive radius of p-adic convergence.
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Existence of a p-adic Frobenius structure implies that the radius of p-adic convergence of solutions is at
least 1:

Theorem 8 (Dwork). If A ∈ Q(t)n×n has no poles in the p-adic disk |t|p < 1 and has a Frobenius structure,
then the fundamental matrix of solutions to dU

dt = AU , U ∈ QpJtKn×n, also converges for |t|p < 1.

Here is a negative example: the rank 1 differential system dU
dt = U has no p-adic Frobenius structure for any

prime p. This fact follows from the above theorem because the solution U(t) = exp(t) has radius of p-adic

convergence p−
1

p−1 < 1. One can also give a direct argument, not involving Dwork’s theorem. Instead,
demonstrate that exp(t− tp) is not a p-adic analytic element. See exercise X below.
In the situation of Proposition 7 we can conclude from (ii) of § 1.1 that the differential equation (2) defining
the Frobenius structure has n2-dimensional Qp-vector space of solutions Φ ∈ QpJtKn×n given by Φ(t) =

U(t)ΛU(tp
h

)−1 with any Λ ∈ Qn×n
p . Their entries have a positive radius of p-adic convergence, and we can

ask for which Λ we actually get entries in Ep. The following theorem tells us that if such Λ exists it is unique
up to a scalar multiple.

Theorem 9 (Dwork, [14]). Let A ∈ Q(t)n×n and suppose that the differential system dU
dt = AU satisfies the

following properties:

• all its singularities are regular,

• all local exponents are in Q ∩ Zp,

• the difference of any two singularities has p-adic valuation 0,

• it is irreducible over Qp(t).

Then if a p-adic Frobenius structure exists, it is unique up to multiplication by a non-zero constant.

In these lectures, we will discuss the existence of a p-adic Frobenius structure and its arithmetic consequences.

1.4 The case of differential equations

For a monic linear differential operator

L = (
d

dt
)n + a1(t)(

d

dt
)n−1 + . . .+ an(t) ∈ Q(t)[

d

dt
]

its companion matrix is defined as

A(t) =


0 1 0 . . .
0 0 1 . . .

... . . .
−an −an−1

 .

Then vector solutions to the differential system dU
dt = AU are precisely of the form

U(t) = (y(t), y′(t), . . . , y(n−1)(t))T ,

where y(t) is a solution to Ly = 0. We would like to consider the cases when L is regular at t = 0
(so all ai(t) are analytic at t = 0) or t = 0 is a regular singularity (which happens when for each i the
coefficient ai(t) has a pole of order at most i at t = 0, see [7]). Both for the analysis of singularity at
t = 0 and for describing the Frobenius structure near this point it is convenient to rewrite the differential
equation in terms of the derivation θ = t d

dt . Multuplying our operator on the left by tn and using formula
ti(d/dt)i = θ(θ + 1) . . . (θ + i− 1) we may assume that

L = θn + b1(t)θ
n−1 + . . .+ bn(t)

4



with all bi analytic at t = 0. Recall that local exponents at t = 0 are the roots of the indicial polynomial
Xn + b1(0)X

n−1 + . . .+ bn−1(0)X + bn. The companion matrix will be

B(t) =


0 1 0 . . .
0 0 1 . . .

... . . .
−bn −bn−1


and solutions to θU = BU are of the form U(t) = (y, θy, . . . , θn−1y)T .
Denote q = ph and consider the operator

L(q) =

n∑
i=0

bi(t
q)qiθn−i.

Since θi(y(tq)) = qi(θiy)(tq), this is the operator whose solutions are given by y(tq) where y(t) is a solution
to L. Note that L(q) has regular singularity at t = 0 with indicial polynomial

∑n
i=0 bi(0)q

iXn−i, and hence
its local exponents are q-multiples of the local exponents of L. The equation for the Frobenius structure of
period h now transforms into

θΦ(t) = B(t)Φ(t)− qΦ(t)B(tq). (3)

Assume that the local exponents of L at t = 0 are rational and let d be the least common multiple of their
denominators. We denote by

Sol(L) ⊂ QpJtK[t−1/d, log(t)]

the n-dimensional Qp-vector space generated by solutions of L. Similarly, we have the Qp-vector subspace
Sol(L(q)) and the isomorphism Sol(L) → Sol(L(q)) given by t 7→ tp and log(t) 7→ p log(t).

Proposition 10. Let L be a differential operator of order n and t = 0 is a regular singularity of L with
rational local exponents. The following conditions are equivalent:

(i) There exists a solution Φ to (3) with entries Φij ∈ Ep ∩QpJtK.

(ii) There exists an invertible linear map A : Sol(L(q)) → Sol(L) given by a differential operator A =∑n−1
i=0 Ai(t)θ

i with coefficients Ai ∈ Ep ∩QpJtK.

Proof. (i)⇒(ii) Let y be a solution to L(y) = 0 and U(t) = (y, θy, . . . , θn−1y)T . Then Φ(t)U(tq) =
(ỹ, θỹ, . . . , θn−1ỹ)T for some solution ỹ ∈ Sol(L). Here

ỹ(t) =

n−1∑
j=0

Φoj(t)(θ
jy)(tq) =

n−1∑
j=0

Φoj(t)q
−jθj(y(tq)),

and hence we obtain a differential operator between the spaces of solutions

A =

n−1∑
j=0

q−jΦ0,j θ
j : Sol(L(q)) → Sol(L).

To show that this operator is invertible we choose any basis y0, . . . , yn−1 ∈ Sol(L). Then yi(t
p), 0 ≤ i ≤ n−1

is a basis in Sol(L(q). Let U = (θiyj)0≤i,j≤n−1 and let Ũ = (θiỹj)0≤i,j≤n−1 be a similar Wronskian matrix

for the images ỹi = A(yi(t
q)). Since Ũ(t) = Φ(t)U(tq), we obtain that the Wronskian determinant of the

images in non-zero
W (ỹ0, . . . , ỹn−1) = det(Ũ) = detΦ · detU ̸= 0,

and hence these solutions are linearly independent.
(ii)⇒(i) Let A =

∑n−1
j=0 Aj(t)θ

j be an invertible linear map between the spaces of solutions. For 0 ≤ i ≤ n−1

we consider the reminder from right-division of θiA by L(q) in the algebra (Ep ∩QpJtK)[θ]:

θiA =

n−1∑
j=0

Aij(t)θ
j + Bi · L(q). (4)
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Consider matrix Φ with entries Φij = qjAij ∈ Ep ∩ QpJtK. Let y0, . . . , yn−1 be a basis in Sol(L). Consider
the constant matrix Λ ∈ GLn(Qp) given by

A(yj(t
q)) =

n−1∑
k=0

yk(t)λkj .

Applying θi to this identity we find that

n−1∑
m=0

Aim(t)qm(θmyj)(t
q) =

n−1∑
k=0

(θiyk)(t)λkj ⇔ Φ(t)U(tq) = U(t)Λ.

We obtain that Φ(t) = U(t)ΛU(tq)−1 and therefore it is invertible and satisfies the differential equation (3).

We would like to note that the entries of Φ and A in the above proposition were assumed analytic at t = 0
in order to have the possibility of multiplication with elements of Sol(L). We could have also assumed that
the entries of Φ and A have a pole of finite order at t = 0, that is belong to Ep ∩Qp((t)).

Remark 11. In the situation of Proposition 10 the product L ◦ A is right-divisible by L(q) in the algebra
(Ep ∩QpJtK)[θ]. Indeed, let B =

∑n−1
i=0 bi(t)θ

i be the remainder from division of −θnA by L(q) on the right.
Put B = (bi(t)) ∈ (QpJtK∩Ep)

n and consider the vector C = (AT )−1B where A = (Aij) is the matrix defined

in (4). Its coordinates satisfy
∑n−1

i=0 ci(t)Aij(t) = bj(t) and therefore(
θn +

n−1∑
i=0

ci(t)θ
i

)
◦ A

is right-divisible by L(q). Since A : Sol(L(q)) → Sol(L) is invertible, we can conclude that the operator

L̃ = θn +
∑n−1

i=0 ci(t)θ
i annihilates all solutions of L. As L and L̃ are monic of the same order, they must

be equal. Thus we obtain that L ◦ A = L̃ ◦ A is right-divisible by L(q).

1.5 Existence of Frobenius structure for rigid differential systems

Consider a differential operator

L = a0(t)

(
d

dt

)n

+ a1(t)

(
d

dt

)n−1

+ . . .+ an−1(t)
d

dt
+ an(t)

with ai ∈ Q[t] and a0 ̸= 0. Let S = {t1, . . . , tn} ⊂ P1(C) be the singularities of L. This set consists of
the roots of a0(t) and possibly the point at infinity. Let t0 ∈ P1(C) \ S be a regular point and V be the
n-dimensional C-vector space of solutions of L near t0. Consider the monodromy representation

ρ : π1(P1(C) \ S, t0) → GL(V )

and assume that it is irreducible. Let γ1, . . . , γn ∈ π1(P1(C) \ S, t0) be simple loops around t1, . . . , tr
satisfying the relation γ1 · . . . · γr = I. Then linear transformations Mi = ρ(γi) (local monodromies) also
satisfyM1 ·. . .·Mr = I. An irreducible tupleM1, . . . ,Mr satisfying the relationM1 ·. . .·Mr = I is called rigid
if for any tuple M̃1, . . . , M̃r such that M̃i = UiM̃iU

−1
i for all i with some Ui ∈ GL(V ) and M̃1 · . . . · M̃r = I,

there exists a matrix U ∈ GL(V ) such that Mi = UM̃iU
−1 for all i simultaneously. If this condition holds

for our tuple of monodromy operators Mi = ρ(γi) then we say that the monodromy of L is rigid.
Let us recall a criterion of rigidity:

Theorem 12 (Katz, [18]). Let M1, . . . ,Mr ∈ GLn(C) be an irreducible tuple satisfying the relation M1 · . . . ·
Mr = I. Denote δi = codimC{A ∈Mn(C) : AMi =MiA}. Then

(i) δ1 + . . .+ δr ≥ 2(n2 − 1),
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(i) the tuple is rigid if and only if δ1 + . . .+ δr = 2(n2 − 1).

We now state the theorem on the existence of p-adic Frobenius operators for rigid Fuchsian operators.

Theorem 13 (Vargas-Montoya, [22]). Let L ∈ Q(t)[d/dt] and suppose that

(i) L is Fuchsian,

(ii) exponents of L are rational numbers,

(iii) the monodromy of L is rigid.

Then there exist an integer h > 0 such that L has a p-adic Frobenius structure of period h for almost all
primes p.

Remark 14. (i) The construction of the integer h > 0 and the set of primes numbers p such that L has a
p-adic Frobenius structure are also given in [22, Theorem 3.8].

(ii)Dwork conjectured in [13] that (i) and (ii) are sufficient for L to have a p-adic Frobenius structure for
almost all primes p.

Results similar to Theorem 13 were also obtained by Crew and Esnault-Groechenig circa 2017. One of the
advantages of Daniel’s approach is that h and the set of bad primes are determined explicitly. Namely, let
d be the least common multiple of denominators of all local exponents of L and P (t) be the least common
multiple of denominators of the rational coefficients a1(t), . . . , an(t). Then h = h1h2 with h1 = ϕ(d) and h2
is the dimension of the splitting field of P (t) over Q. Operator L then has a p-adic Frobenius structure of
period h for every prime p for which

• all local exponents are p-integral (⇔ p ∤ d)

• |ai(t)|G ≤ 1 for i = 1, . . . , n

• the difference of any two singularities has p-adic valuation 0

The reference for this is [22, Theorem ?].

2 Exercises

2.1 Amice ring

For every prime number p, the Amice ring is defined as follows

Ap =

{∑
n∈Z

ant
n : an ∈ Qp, lim

n→−∞
|an|p = 0 and sup

n∈Z
|an|p <∞

}
.

For every f =
∑

n∈Z ant
n, we set

|f |G = sup
n∈Z

|an|p.

(i) Prove that | |G is a norm. This norm is called the Gauss norm.

(ii) Prove that Ap is complete with respect to the Gauss norm.

(iii) Prove that Q(t) ⊂ Ap and show that ∣∣∣∣∣
∑

i ait
i∑

j bjt
j

∣∣∣∣∣
G

=
maxi |ai|p
maxj |bj |p

.

Conclude that Ep ⊂ Ap, where Ep is the p-adic closure of Q(t) called the field of p-adic analytic
elements.
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(iv) Show that Ap is a field.

Remark: Usually, the Amice ring is defined with coefficients in Cp, in which case it is not true that
every non-zero element is invertible. It is essential for this exercise that the Gauss norm is discretely
valued on Ap.

(v) Show that if f =
∑

n≥0 anz
n ∈ Ap has radius of convergence greater than 1 then f ∈ Ep.

2.2 Hypergeometric Frobenius structures

A generalized hypergeometric differential operator of order n ≥ 1 is given by

L = (θ + β1 − 1)(θ + β2 − 1) . . . (θ + βn − 1)− t(θ − α1) . . . (θ − αn), θ = t
d

dt

with some complex numbers α1, . . . , αn, β1, . . . , βn. This is a Fuchsian operator with singularities at 0, 1,∞.
The local exponents read

1− β1, . . . , 1− βn at t = 0,

α1, . . . , αn at t = ∞,

1, 2, . . . , n− 1,−1 +

n∑
i=1

(βi − αi) at t = 1.

The monodromy representation of L is known to be irreducible if and only if αi − βj /∈ Z for all i, j.
In his thesis in 1961 Levelt gave a beautiful explicit proof of rigidity of monodromy groups of irreducible
hypergeometric monodromy operators (see [6, §1.2]).

(i) Check that an irreducible hypergeometric differential equation satisfies Katz’ criterion of rigidity given
in Theorem 12.

(ii) Suppose that αi, βj ∈ Q and αi − βj /∈ Z for all i, j. Then the hypergeometric operator L satisfies the
conditions of Theorem 13. Compute the order of this Frobenius structure and the set of primes for
which it exists using the recipe given after Theorem 13.

2.3 p-adic analytic continuation

Let us consider the hypergeometric series

f(t) = 2F1(1/2, 1/2, 1; t) =
∑
n≥0

(1/2)2n
n!2

tn.

Dwork has shown in his ”p-adic cycles” paper that, for all p > 2, the quotient f(t)/f(tp) belongs to Ep. More
precisely, he showed that for all p > 2 and s ≥ 1

f(t)

f(tp)
=

fs(t)

fs−1(tp)
mod ps with fs(t) =

ps−1∑
n=0

(1/2)2n
n!2

tn.

(i) Show that the p-adic radius of convergence of f(t)/f(tp) is 1 for any p > 2.

(ii) Consider the region
D = {y ∈ Zp : |f1(y)|p = 1}

and check the following facts:

(a) {y ∈ Zp : |y| < 1} ⊂ D, and if y ∈ D then yp ∈ D;

(b) for every s ≥ 0 one has |fs(y)|p = 1 when y ∈ D;
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(c) the sequence of rational functions fs(y)/fs−1(y
p) converges uniformly in D, and if we denote the

limiting analytic function by ω(y) = lims→∞ fs(y)/fs−1(y
p) then for all s ≥ 1

sup
y∈D

∣∣∣∣ω(y)− fs(y)

fs−1(yp)

∣∣∣∣ ≤ 1

ps
;

(d) f(t)/f(tp) is the restriction of ω(t) to {y ∈ Zp : |y|p < 1}.

Remark: The above procedure of analytic continuation allows to evaluate ω(y) at points y ∈ Z×
p

such that |f(y)|p = 1. Dwork also noted that the value ω(y0) at a Teichmuller units y0 ∈ Z×
p , y

p−1
0 = 1

is equal to the p-adic unit root of the elliptic curve y2 = x(x− 1)(x− y0) where y0 is the reduction of
y0 modulo p. The condition |f1(y0)|p = 1 chooses the ordinary elliptic curves in the Legendre family.
A vaste generalisation of the above Dwork’s congruences along with the evaluation of the respective
p-adic analytic element is given in ”Dwork crystals II” by Beukers-Vlasenko (see Theorem 3.2 and
Remark 4.5).

(iii) Argue that the sequence of rational functions fs(t)/fs−1(t
p) converges in the Gauss norm, and hence

ω(t) ∈ Ep

2.4 p-adic Frobenius structure for differential equations of rank 1

(i) Prove that, for any p > 2, the differential operator

d

dt
− f′(t)

f(t)

has a p-adic Frobenius structure of period 1. Here f is the hypergeometric function considered in the
previous set of exercises.

(ii) Let L = d/dt− a(t) be a differential operator with a(t) ∈ Q(t). Prove that if L has a p-adic Frobenius
structure for almost all primes p then a(t) = f ′(t)/f(t) with f(t) ∈ Q[[t]] algebraic over Q(t). Is the
converse true?

Hint: Use the fact that the Grothendieck-Katz p-curvature conjecture holds for operators of rank 1.

(iii) Prove that the differential equation d/dt− 1 does not have a p-adic Frobenius structure for any p.

(iv) Let πp be in Q such that πp−1
p = −p. Prove that d/dt− πp has a p-adic Frobenius structure.

Remark: A. Pulita in his work Frobenius structure for rank one p-adic differential equations gives a
characterization of the differential operators of rank 1 having a p-adic Frobenius structure for given p.

3 Algebraicity of G-functions modulo p

Let K be a field and let f(t) be a power series with coefficients in K. We say that f(t) is algebraic over
K(t) if there exists a nonzero polynomial P (Y ) ∈ K(t)[Y ] such that P (f) = 0. Otherwise, we say that f(t)
is transcendental over K(t).

Given a prime number p, Z(p) is the localization of Z at prime ideal (p). In other words,

Z(p) =
{a
b
∈ Q | (a, b) = 1, (p, b) = 1

}
.

In particular, the elements of the ring Z(p) can be reduced modulo p and the residue field of Z(p) is Fp, the
field with p elements.

For a power series f(t) =
∑

n≥0 ant
n ∈ Z(p)[[t]], the reduction modulo p of f(z) is the power series

f|p(t) =
∑
n≥0

(an mod p)zn ∈ Fp[[t]].
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Definition 15 (Algebraicity modulo p). Let f(t) be a power series with coefficients in Q. We say that f(t)
is algebraic modulo p if:

1. we can reduce f(t) modulo p, that is, f(t) belongs to Z(p)[[t]],

2. the reduction of f(t) modulo p is algebraic over Fp(t), that is, there exits a nonzero polynomial P (Y ) ∈
Fp(t)[Y ] such that P (f|p) = 0.

If f(t) ∈ Q[[t]] is algebraic modulo p, the algebraicity degree of f|p(t), denoted deg(f|p), is the degree of the
minimal polynomial of f|p(t) or equivalent

deg(f|p) = [Fp(t)(f|p) : Fp(t)].

3.1 p-adic Frobenius structure implies algebraicity of solutions modulo p

Theorem 16 (Vargas-Montoya,[22]). Let L ∈ Q(t)
[
d
dt

]
be a differential operator of order n and f(t) ∈ Q[[t]]

be a solution of L. If f(t) ∈ Z(p)[[t]] and L has a p-adic Frobenius structure of period h then f(t) is algebraic

modulo p and deg(f|p) ≤ pn
2h.

Proof. Let A be in Mn(Q(t)) the companion matrix of L. Since L has a p-adic Frobenius structure of period

h, by Proposition 10, there exists A =
∑n−1

i=0 Ai(t)
(

d
dt

)i ∈ Ep

[
d
dt

]
such that, for every solution y(t) of L, the

composition A(y(tp
h

)) is a solution of L. Consider V := {g ∈ Ap, Lg = 0}. It is clear that V is a Qp-vector
space. Further, the vector f(t) ∈ V because f(t) ∈ Z(p) and Lf = 0. We then put

ψ : V →V

y⃗ 7→A(y(tp
h

))

So ψ is a Qp-linear map. Since dimQpV = r ≤ n, from Cayley-Hamilton theorem we get that there are
c0, . . . , cr−1 ∈ Qp such that

ψr + cr−1ψ
r−1 + · · ·+ c1ψ + c0 = 0. (5)

Let Z be the Ep vector space generated by the elements of the following set {f (j)(tpih

) : j ∈ {0, . . . , n−1}, i ∈
N}. From the equality (5) we conclude that Z has dimension less or equals than nr. Since f(z), . . . , f(zp

nrh

) ∈
Z, there are j ≤ nr and b0, . . . , bj ∈ Ep such that

bj(t)f(t
pjh

) + bj−1(t)f(t
p(j−1)h

) + · · ·+ b0(t)f(t) = 0.

Let bl(t) such that |bl(t)| = max{|b0(t)|, . . . , |bj(t)|} and define ci(t) = bi(t)/bl(t). Then, for all i ∈ {0, . . . , j},
|ci| ≤ 1 and

cj(t)f(t
pjh

) + cj−1(t)f(t
p(j−1)h

) + · · ·+ c0(t)f(t) = 0.

We set di(t) = ci(t), where ci(t) is the reduction of ci(t) modulo the maximal ideal of ϑEp . Then, for all
i ∈ {1, . . . , j}, di(t) ∈ Fp(z),

dj(t)(f|p(t
pjh

)) + dj−1(t)(f|p(t)
p(j−1)h

) + · · ·+ d0(t)f|p(t) = 0 (6)

and d0(t), . . . , dj(t) are not all zero because 1 = max{|c0(t)|, . . . , |cj(t)|}. As j ≤ nr ≤ n2 and Fp has

characteristic p, from (6) one gets that f|p(t) is algebraic over Fp(t) and that deg(f|p) ≤ pn
2h.

We now introduce the following sets

Algmod = {f(t) ∈ Q[[t]] | f is algebraic modulo p for infinitely many primes p}

Fs = {f(t) ∈ Q[[t]] | f(t) is solution of a differential operator L having Fs for almost all primes p}

Fs∗ =
{
f(t) ∈ Q[[t]] | f(t) ∈ Fs and f(t) ∈ Z(p)[[t]] for infinitely many primes p

}
.

10



As a consequence of Theorem 16, we have

Fs∗ ⊂ Algmod.

As an example let us consider f2(t) =
∑

n≥0

(
2n
n

)2
tn. This power series is solution of the differential operator

δ2 − 16z(δ + 1/2)2.

According to Exercise 2.2, this differential operator has a p-adic Frobenius structure for all p > 2 of period
1. Then, from Theorem 16, f2(t) is algebraic modulo p and deg(f2|p) ≤ p4 for all p > 2.

Remark 17. The power series f2(t) is transcendental over Q(t). Nevertheless, f|2(t) is algebraic over Fp(t)
for all p > 2.

The following inclusion will be proven in Theorem 26

Fs ⊂ G-functions,

where G-functions is the class of G-functions introduced by Siegel in 1929. In addition, a famous conjecture
due to Bombieri and Dwork suggests that

G-functions ⊂ Fs.

Furthermore, Adamczewski and Delaygue recently conjectured that

G-functions∗ ⊂ Algmod,

where G-functions∗ is the set of the power series f(t) ∈ Q[[t]] that are G-functions and there exists an
infinite set S of prime numbers such that, for all p ∈ S, f(t) ∈ Z(p)[[t]].

We are going to see that the Adamczewski-Delaygue’s conjecture is true for many of G-functions, namely,
diagonals of algebraic power series and hypergeometric series nFn−1 with rational parameters.

3.2 G-functions

We say that f(t) =
∑

n≥0 ant
n ∈ Q[[t]] is a G-functions if:

(i) there exists a nonzero differential operator L ∈ Q(t)
[
d
dt

]
such that L(f) = 0,

(ii) there exists C > 0 such that |an| < Cn+1 for all n ≥ 0,

(iii) there exists D > 0 and a sequence of integers Dm > 0 with Dm ≤ Dm+1 such that Dman ∈ Z for all
n ≤ m.

The main examples of G-functions are given by diagonals of algebraic power series and hypergeometric series

nFn−1 with rational parameters.

3.2.1 Diagonals

Let K be any field. For every integer n ≥ 1, we define the diagonalisation operator

∆n : K[[t1, . . . , tn]]
rat → K[[t]]∑

i∈Nn

a(i1, . . . , in)t
i1
1 · · · tinn 7→

∑
j≥0

a(j, . . . , j)tj ,

where K[[t1, . . . , tn]]
rat = K[[t1, . . . , tn]] ∩K(t1, . . . , tn).

Definition 18. We say that f(t) ∈ K[[t]] is a diagonal of a rational function if there are an integer n > 0
and F ∈ K[[t1, . . . , tn]]

rat such that
∆n(F ) = f.

11



We put
Diagrat

K = {f(t) ∈ K[[t]] | f(t) is a diagonal of a rational function } .

For example, the power series f2(t) =
∑

n≥0

(
2n
n

)2
tn belongs to Diagrat

Q because ∆4(R(t1, . . . , t4)) = f2(t),
whit

R(t1, . . . , t4) =
1

(1− t1)(1− t2)(1− t3)(1− t4)
=

∑
(i1,i2,i3,i4)∈N4

(
i1 + i2
i1

)(
i3 + i4
i3

)
ti11 t

i2
2 t

i3
3 t

i4
4 .

The generating power series of Apéry’s numbers

A(t) =
∑
n≥0

(
n∑

k=0

(
n

k

)2(
n+ k

k

)2
)
tn

is the diagonal of the following rational function

1

[1− t1t2t3t4][(1− t1)(1− t4)− t0(1 + t1)(1 + t2)]
.

Theorem 19 (Furstenberg [16]). Let K be a field of characteristic p > 0. If f(t) ∈ Diagrat then f(t) is
algebraic over K(t).

This result was extended by Deligne to diagonal of algebraic power series. We say that f(t) ∈ K[[t]] is a
diagonal of an algebraic power series if there are n > 0 and F ∈ K[[t1, . . . , tn]]

alg such that ∆n(F ) = f ,
where K[[t1, . . . , tn]]

alg is the set of power series in K[[t1, . . . , tn]] that are algebraic over K(t1, . . . , tn). We
then put

Diagalg
K = {f(t) ∈ K[[t]] | f(t) is a diagonal of an algebraic power series} .

It is clear that Diagrat ⊂ Diagalg.

Theorem 20 (Deligne [11]). Let K be a field of characteristic p > 0. If If f(t) ∈ Diagalg then f(t) is
algebraic over K(t).

In the following proposition we state some properties of the set Diagalg.

Proposition 21. The following statements hold.

1. For any field K, DiagratK = DiagalgK .

2. If f(t) ∈ DiagratQ then f(t) is N -integral, that is, there exists c ∈ N > 0 such that f(cz) ∈ Z[[t]].

Proof. 1. See [12, Theorem 6.2]

2. It is a direct consequence of 1.

Thanks to Proposition 21, Theorem 19 and Theorem 20 are equivalent.

Theorem 22. The following inclusions hold:

1. DiagratQ ⊂ Algmod,

2. DiagratQ ⊂ G-functions,

3. DiagratQ ⊂ Fs∗.
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Proof. Let f(t) be in Diagrat
Q .

1. By 2 of Proposition 21, we get that f(t) ∈ Z(p)[[t]] for almost all primes p. By assumption f = ∆n(F ) with
F ∈ Q[[t1, . . . , tn]] ∩ Q(t1, . . . , tn). So, for almost all primers p, F ∈ Z(p)(t1, . . . , tn). Since f|p = ∆n(F|p),

we conclude that, for almost all primes p, f|p(t) ∈ Diagrat
Fp

. Then, by Theorem 19, we deduce that f(t) ∈
Algmod.

2. It is shown in [10] that f(t) is a solution of a nonzero differential operator L ∈ Q(t)
[
d
dt

]
. Another proof

is given in [20]. The condition (iii) is satisfied because f(t) is globally bounded and the (ii) is also satisfied
because the radius of convergence of f(t) is not zero.

3. By [10], we know that f(t) is solution of a Picard-Fuchs operator L ∈ Q(t)
[
d
dt

]
. Then, according to [19,

Theorem 22.1], L is equipped with a p-Frobenius structure for almost all primes p. Finally, 2 of Proposition 21
implies that f(t) ∈ Z(p)[[t]] for almost all primes p. Hence f(t) ∈ Fs∗.

For a G-function f(t), we let Sf denote the set of primer number p such that f(t) ∈ Z(p)[[t]]. According

to Theorem 22, if f(t) ∈ Diagrat
Q then P \ Sf is finite, where P is the set of prime numbers. Deligne[11]

proposed that the behaviour of deg(f|p) with respect to p ∈ Sf is polynomial in p. More precisely,

Deligne’s question:(Deligne[11]) Let f(t) be in Diagrat
Q . Is there a constant c > 0 such that, for all p ∈ Sf ,

deg(f|p) < pc?

In the particular case of the power series f2(t), we can take c = 4 because we have already seen that
deg(f2|p) ≤ p4 for all p > 2. It was in 2013 that Adamczewski and Bell [1] gave an affirmative answer to this
question. Further, it is observed that in many examples, Deligne’s question has an affirmative answer for
G-functions which are not diagonals. For example, the hypergeometric series

h(t) =
∑
n≥0

(1/5)2n
(2/7)nn!

tn

does not belong to Diagrat
Q because h(t) is not N -integral. Nevertheless, Sh is the set of prime numbers p

such that p = 1 mod 35 and we have deg(h|p) ≤ p for all p ∈ Sh.

The fact that Deligne’s question has an affirmative answer for many G-functions that are not diagonals led
Adamczewski and Delaygue to formulated the following conjecture

Conjecture 23. (Adamczewski–Delaygue’s conjecure) Let f(t) be a G-function such that Sf is infinite.
Then:

(i) f|p is algebraic over Fp(t) for almost all p ∈ Sf ,

(ii) there exists c > 0 such that, for all p ∈ Sf verfying (i), deg(f|p) < pc.

Thanks to Theorem 19 and [1], this conjecture is true when f(t) belongs toDiagrat
Q . Recently, this conjecture

was proven for another interesting class of G-functions, namely, hypergeometric series nFn−1 with rational
parameters.

3.2.2 Hypergeometric series nFn−1

Given two vectors α = (α1, . . . , αn) and β = (β1, . . . , βn−1, 1) in (Q \Z≤0)
n, the hypergeometric series with

parameters α and β is the power series

nFn−1(α,β, t) =
∑
j≥0

Qα,β(j)t
j with Qα,β(j) =

(α1)j · · · (αn)j
(β1)j · · · (βn−1)jj!

,

where for a real number x and nonnegative integer j, (x)j is the Pochhammer symbol, that is, (x)0 = 1 and
(x)j = x(x+ 1) · · · (x+ j − 1) for j > 0. We denote by dα,β the least common multiple of the denominators
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of α1, . . . , αn and β1, . . . , βn−1 written in lowest form. It is well-known that nFn−1(α,β; z) is a solution of
the hypergeometric operator

H(α,β) =

n∏
i=1

(δ + βi − 1)− z

n∏
i=1

(δ + αi), with δ = z
d

dz
.

We put
HGS = {nFn−1(α,β, t) | with n > 0 and α,β ∈ (Q \ Z≤0)

n} .

We have the following inclusion

Theorem 24. HGS ⊂ G-function.

Proof. Let f(t) = nFn−1(α,β, t) be in HGS. We know that f(t) is solution of the differential operator
H(α,β). So the condition (i) is verified. Condition (ii) and (iii) follows from [4, Lemma 4.4 Chp I] and [15,
Proposition 1.1 Chp VIII]

In [22], it was proven that the Adamcezwki-Delaygue’s conjecture is true for a lot G-functions in HGS. To
be more precise, we have

Theorem 25. ([22, Theorem 1.2]) Let f(t) = nFn−1(α,β, t) ∈ HGS such that 1 ≤ i, j ≤ n, αi − βj /∈ Z
and let p a prime number such that for all 1 ≤ i, j ≤ n, |αi|p ≤ 1 and |βj |p ≤ 1. If f(t) ∈ Z(p)[[t]] then f|p(t)

is algebraic over Fp(t) and deg(f|p) ≤ pn
2φ(dα,β), where φ is the Euler’s Totient function.

Proof. We know that f(t) is solution of the differential operator H(α,β). Given that, for all 1 ≤ i, j ≤ n,
|αi|p ≤ 1, |βj |p ≤ 1 and αi − βj /∈ Z, it follows from first session that H(α,β) is equipped with a p-adic
Frobenius structure of period φ(dα,β). By assumption f(t) ∈ Z(p)[[t]] and thus, by Theorem 16, f|p(t) is

algebraic over Fp(t) and deg(f|p) ≤ pn
2φ(dα,β).

Thanks to this theorem, the conjecture Adamcezwki-Delaygue’s conjecture is true for any f(t) ∈ HGSrig,
where

HGSrig = {nFn−1(α,β, t) | with n > 0, α,β ∈ (Q \ Z≤0)
n and ∀1 ≤ i, j ≤ n, αi − βj /∈ Z} .

We finish this section by showing the inclusion Fs ⊂ G-functions. In order to prove this inclusion, we recall
the notion of the radius of convergence at generic point for a differential equation L ∈ Q(t)

[
d
dt

]
. Let A be

the companion matrix of L and let us consider the sequence of matrices {As}s≥0, where A0 is the identity
and A1 = A and As+1 = d

dtAs + AsA. So, the radius of convergence of L at the generic point associated to
p is the real number rp(L) defined as follows

1

rp(L)
= lim

s→∞

∣∣∣∣∣∣∣∣As

s!

∣∣∣∣∣∣∣∣1/s
G,p

.

It is not hard to see that rp(L) > 0. Moreover, according to Propositions 4.1.2, 4.6.4, 4.7.2 of [9], if L has a
p-adic Frobenius structure then rp(L) = 1.

Theorem 26. Fs ⊂ G-functions.

Proof. Let us take f(t) ∈ Fs. Then f(t) is solution of a differential operator L having p-adic Frobenius
structure for almost all primes p. In particular, for almost all primes p, rp(L) = 1. Therefore

∏
p rp(L) > 0

and, by [4, Theorem C p.3], we conclude that f(t) is a G-function.
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4 Algebraic independence of G-functions

An interesting consequence of the algebraicity modulo p of G-functions is that, in many cases, it allows
us to prove the transcendence and algebraic independence of G-functions. We recall that the power series
f1(t), . . . , fr(t) ∈ Q[[t]] are algebraically independent over Q(t), if for any nonzero poylnomial P (Y1, . . . , Yn) ∈
Q(t)[Y1, . . . , Yn], P (f1, . . . , fn) ̸= 0. Otherwise, we say that f1(t), . . . , fr(t) are algebraically dependent over
Q(t).

It seems that Sharif and Woodcock were the first to use algebraicity modulo p to prove the transcendence
of certain G-functions. Indeed, in 1989 they proved [21] that, for all integers r ≥ 2,

fr(z) =
∑
n≥0

(
2n

n

)r

tn

is transcendental over Q(t). Their strategy is based on the following lemma.

Lemma 27. Let f(t) ∈ Z[[t]] be algebraic over Q(t). Then the sequence {deg(f|p)}p∈P is bounded.

Thus, if f(t) is a power series with coefficients in Z such that the sequence {deg(f|p)}p∈P is not bounded
then f(t) is transcendental over Q(t). So, Sharif and Woodcock showed that, for all integers r ≥ 2, the
sequence {deg(fr|p)}p∈P is not bounded. For do that, they used the fact fr(t) is p-Lucas for all primes p.

Definition 28. (p-Lucas congruences) Let f(t) =
∑

n≥0 ant
n be a power series in 1 + tQ[[t]]. We say that

f(t) is p-Lucas if:

(i) f(t) can be reduced modulo p, taht is, f(t) ∈ Z(p)[[t]]

(ii) the reduction modulo p of f(t) satisfies the equality

f|p(t) =

(
p−1∑
i=0

(an mod p)ti

)
f|p(t)

p (7)

For example, Gessel [17] proved that A(t) is p-Lucas for all primes p. In problem session we are going to see
that, for any r ≥ 1, fr(t) is p-Lucas for all primes p.

In 1998, Allouche, Gouyou-Beauchamps and Skordev [3] generalized the approach introduced by Sharif and
Woodcock by giving a criterion for when a power series that is p-Lucas for all primes p is algebraic over Q(t).
Their result reads as follows

Theorem 29. Let f(t) be in Z[[t]]. Suppose that f(t) is p-Lucas for almost all primes p. Then f(t) is
algebraic over Q(t) if and only if there is a polynomial P (t) ∈ 1 + tQ[t] the degree less than or equal to 2
such that f(t) = P (t)−1/2.

As a consequence of this result we can show that A(t) is transcendental over Q(t). Let us suppose by
contradiction that A(t) is algebraic over Q(t). Given that A(t) is p-Lucas for all primes p then there is a
polynomial P (t) ∈ 1+ tQ[t] the degree less than or equal to 2 such that A(t) = P (t)−1/2. In particular, A(t)
is solution of the differential operator

P (t)
d

dt
+

1

2
P ′(t).

But, it is well-known that the minimal differential operator for A(t) over Q(t) is given by

(1− 34t+ t2)t2
d

dt3
+ (3− 153t+ 6t2)t

d

dt2
+ (1− 112t+ 7t2)

d

dt
− 5 + t.

Therefore, A(t) is transcendental over Q(t).We can also use Theorem 29 to prove that fr(t) is transcendental
over Q(t) for r > 1 given that fr(t) is p-Lucas for all primes p and its minimal differential operator over Q(t)
is given by

δr − t(δ + 1/2)r.

Recently, Adamczewski, Bell and Delaygue show how to use the relation (7) to study the algebraic inde-
pendence of some power series. For this purpose, they introduce the set L(S), where S is a set of prime
numbers.
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Definition 30. Let S be a set of prime numbers. The set L(S) is the set of power series f(t) ∈ 1 + tQ[[t]]
such that for every p ∈ S:

(i) f(t) ∈ Z(p)[[t]],

(ii) there are polynomials Ap(t), Bp(t) ∈ Fp(t) and a positive integer l such that

f|p(t) =
Ap(t)

Bp(t)
f|p(t)

pl

,

(iii) the degrees of Ap(t) and Bp(t) are less than Cpl, where C is constant that does not dependent on p.

Remark 31. Let S be a set of prime numbers. If f(t) =
∑

n≥0 ant
n is p-Lucas for all p ∈ S then f(t) ∈ L(S).

Indeed, for every p ∈ S, f(t) ∈ Z(p)[[t]] and

f|p(t) = Ap(t)f|p(t)
p with Ap(t) =

p−1∑
n=0

a(nmodp)tn.

It is clear that the degree of Ap(t) is less than p.

In [2], Adamczewski, Bell and Delaygue prove the following result

Theorem 32. Let S be an infinite set of prime numbers and let f1(t), . . . , fr(t) ∈ L(S). Then, f1(t), . . . , fr(t)
are algebraically dependent over Q(t) if and only if there are a1, . . . , ar ∈ Z not all zero such that

f1(t)
a1 · · · fr(t)ar ∈ Q(t).

By applying this theorem, the authors prove that all elements of the set {fr(t)}r≥2 are algebraically indepen-
dent over C(t) (see [2, Theorem 2.1]). In the same work they also show that many G-functions are p-Lucas
for infinitely many primes p. In order to do that, they study in detail the p-adic valuation of the coefficients
of the hypergeometric series and the power series obtained as specialization of factorial ratios. Furthermore,
in [23] the question of determining when a power series belongs to L(S) for an infinite set S of prime numbers
is addressed from the point of view of the p-adic Frobenius structure.

Before stating the main result of [23], we recall that D ∈ Q(t)[ ddt ] is MUM at zero if zero is a regular singular
point of D and the exponents at zero of D are all zero. Finally, we recall that Cartier operator associated
to p is the Q-linear map Λp : Q[[t]] → Q[[t]] defined as follows Λp(

∑
n≥0 ant

n) =
∑

n≥0 anpt
n.

Theorem 33. Let f(t) =
∑

n≥0 ant
n be in Fs∗ and let Sf be the set of prime numbers p such that f(t) ∈

Z(p)[[t]]. Suppose that f(t) is solution of a differential operator D ∈ Q(t)[ ddt ] that is MUM at zero. Then:

1. there exist a constant C > 0 and a set S ′ ⊂ Sf such that Sf \ S ′ is finite and, for all p ∈ S ′,

f|p(t) =
Ap(t)

Bp(t)
f|p(t)

pl

,

where Ap(t), Bp(t) belong to Fp[t] and their degrees are bounded by Cp2l.

2. Moreover, if for all p ∈ Sf , Λp(f|p) = f|p then f(t) ∈ L(S ′), where S ′ ⊂ Sf and Sf \ S ′ is finite.

Theorem 33 is used in [23] to prove that a big class of G-functions are in L(S), where P \S is finite. Mainly,
the author uses this theorem to show that the amongst the 400 power series appearing in [5] there are 242
that belong to L(S). Actually, according to some standard conjectures, it is expected that all power series
in [5] belong to Fs∗.

In [23] it is also shown that some hypergeometric series do not belong to L(S) for any infinite set S of prime
numbers. For any r ≥ 1, we consider the hypergeometric series

gr(t) =
∑
n≥0

−1

2n− 1

(
2n

n

)r

tn ∈ 1 + tZ[[t]].
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It is easy to check that gr(t) is not p-Lucas for any p > 2. Further, in [23] it is shown that if S is an infinite
set of prime numbers then g2(t) /∈ L(S). The arguments given in [23] lead us to think that the same situation
is true for gr(t) with r > 2. However, for any r ≥ 1 the hypergeometric series gr(t) satisfies the assumptions
of Theorem 33 because gr(t) is solution of the heypergeometric operator

δr − t(δ − 1/2)(δ + 1/2)r−1.

It is clear that this operator is MUM at zero and, according to the first session, has a p-adic Frobenius
structure for all p > 2.
Consequently, we are not able to apply Theorem 32 to the set {gr(t)}r≥2. So, this raises the problem of
giving an algebraic independence criterion for the power series that verify the assumptions of Theorem 33.
Even if we do not yet have of such a criterion, it is shown in [23] the following results.

Theorem 34. (i) All elements of the set {gr(t)}r≥2 are algebraically independent over Q(t).

(ii) The power series g2(t) and A(t) are algebraically independent over Q(t).

5 Exercises

The goal of this problem session is to prove that fr(t) =
∑

n≥0

(
2n
n

)r
tn is transcendental over Q(t) following

the approach given by Sharif and Woodcock.

5.1 Diagonals

(i) Given two power series f(t) =
∑

n≥0 t
n and g(t) =

∑
n≥0 =

∑
n≥0 bnt

n, the Hadamard product of f(t)
and g(t) is defined as follows:

f(t) ⋆ g(t) =
∑
n≥0

anbnt
n.

Prove that if f(t) and g(t) belong to Diagrat
K then f(t) ⋆ g(t) belongs to Diagrat

K . Conclude that, for
all r ≥ 1, fr(t) belongs to Diagrat

Q .

5.2 Algebraicity modulo p

According to Theorems 13 and 16, f|pr(t) is algrebaic modulo p for all p > 2 and deg(fr|p) ≤ pr
2

. In this
exercise we are going to prove that fr(t) is p-Lucas for all primes p.

(ii) Lucas’ Theorem. Let p be a prime number and n =
∑s

i=0 nip
i, m =

∑s
i=0mip

i be the p-adic expansion
expansion of n,m ∈ N. Prove that (

n

m

)
=

s∏
i=0

(
ni
mi

)
mod p.

(iii) Prove that (
ap+ s

bp+ t

)
=

(
a

b

)(
r

s

)
mod p

for any a, b ∈ N and any 0 ≤ t, s < p.

(iv) Let p > 2. Prove that

(
2(np+m)

np+m

)r

≡


(
2n
n

)r(2m
m

)r
mod p si m ∈ {0, 1 . . . , (p− 1)/2}

0 mod p si m ∈ {(p+ 1)/2, . . . , p− 1}.

(v) Conclude that fr(t) is p-Lucas for all primes p and that Pr(fr|p) = 0 where

Pr(Y ) = Y p−1 −
(p−1)/2∑
n=0

((
2n

n

)
mod p

)
tn
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5.3 Transcendence

(vi) Prove Lemma 27.

(vii) Let N > 0 be a natural number. Then there exist infinitely many primes p such that if a divides p− 1
then a = 1, 2 or a > N .

(viii) Let N > 0 be a natural number and let r ≥ 2. Then there exists a primer number p such that
deg(fr|p) > N .

Hint: Let a = [K : Fp(t)], where K is the splitting field of Pr(Y ). Prove that a divides p− 1 and that
deg(fr|p) divides a.

In the previous approach, the fact that fr(t) is p-Lucas for all p > 2 is crucial for proving the transcendence
of fr(t), r ≥ 2. However, in some cases we can prove transcendence without assuming p-Lucas condition.
For every r ≥ 1, we consider the hypergeometric series

gr(t) =
∑
n≥0

−1

2n− 1

(
2n

n

)r

tn ∈ 1 + tZ[[t]].

(ix) Prove that g1(t) is algebraic.

(x) Prove that, for all r ≥ 1, gr(t) is not p-Lucas for any p > 2.

(xi) Prove that, for all p > 2, gr(t) = Ap(z)fr(t)
p, where Ap(t) ∈ Fp[t] has degree less than p.

(xii) Prove that, for all p > 2, deg(gr|p) = deg(fr|p).

(xiii) Conclude that gr(t) is transcendental over Q(t) for r > 1.
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d’analyse ultramétrique 12 (1984/85), Exp No 13, 12 pp.

18

https://webspace.science.uu.nl/~beuke106/springschool99.pdf
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