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1 p-adic Frobenius structure for ordinary differential equations

1.1 Equivalence of differential systems

Let K D C(t) be a differential field. That is, a field with the derivation 4 : K — K which extends the usual
derivation on the field of rational functions C(t). Take two matrices A, B € C(¢)"*™ and consider linear
differential systems

au

rri

AU and  (II) Y _ gy,

(1) T



Definition 1. We say that (II) is equivalent to (I) over K if there exists a matric H € GL,(K) such that

dH
—— =AH - HB. 1
p (1)

Notation: (2) ~% (1).

Note that this relation is symmetric because H ! will satsfy with the roles of A and B interchanged.
We first make formal algebraic observations about the meaning of this differential equation:

(i) If V is a vector solution to (2) with entries in a possibly bigger field, then U = HV is a vector solution
to (1):
dau d
== 2 (HV) = (AH — HB)V + HBV = AHV = AU.
(ii) If U,V are fundamental matrices of solutions to (1) and (2) respectively, then A = U1 HV is a constant
matrix:

d
o (UT'HV) = (-U'A)HV + U '(AH — HB)V + U 'HBV =0.

Example 2 (local study / Fuchsian theory of regular singularities). Let A € C(¢)"*™ with no pole at t = 0.
Let O be the ring of germs of holomorphic functions near t = 0 and K = O[t™'] be the field of germs of
meromorphic functions. Then there exists a constant matrixz T' € C"*™ such that

U _ AW, x4V _T

dt t .t
Differential systems of this kind are either reqular or regular singular at t = 0, which means that their
solutions have moderate growth on approach to this point (see [S, Theorem 1.3.1]). Note that V = t' is a
fundamental solution matriz of the second system and My = exp(2mil') is its monodromy around t = 0.Since
elemnts of K are single-valued att = 0 (have trivial monodromy), local monodromy matrices of two equivalent
systems are conjugate by an element of GL,(C). Two such systems of this kind (regular or regqular singular)
are equivalent over K if and only if their local monodromy matrices My are conjugate by an element of

GL,(C) ([8, Corollary 1.5.2]).

1.2 p-adic analytic elements

Let p be a prime number. The Gauss norm on Q[t] is defined as

n . .
lap + a1t + ...+ ant™|g = Jnax |ailp.

It satisfies the properties
e |f+glg <max(|flg,|glg) (non-Archimedean triangle inequality);

o |f-glg =Iflg - lglg (Gauss” lemma).

This non-Archimedean norm extends uniquely to the field of rational functions Q(¢) preserving the properties
(i)-(ii). In particular, for a ratio of two polynomials one has

Zi aiti
Zj bjtj

With the Gauss norm Q(¢) becomes an incomplete discretely valued field.

_ max; |agl,

g a max; [bj],”

Definition 3. The field of p-adic analytic elements E, is the completion of Q(t) with respect to the Gauss
norm.

Elements of E,, are p-adic limits of rational functions. One class of examples is given by series > - a,t"
with |a,|, — 0 as n — co. We will encounter more sophisticated examples below.



Proposition 4. The following operations on Q(t) are continuous with respect to the Gauss norm:

(i) Frobenius endomorphism f(t) — f(tP),

d

(ii) derivation g .

Proof. Property |f(t?)|g = |f(t)|g follows immediately from the definition of the Gauss norm. For (ii) we
note that for f =), a;t* € Q[t] one has |f'|g = max; |ia;|, < max; |a;|, = |f|g. With this we can make the
conclusion for the ratio of two polynomials:

d(f\y _1f9=9gf _|f'g—9gflg _ max(|f'glg.19'flg) _ |flg-lglg _|f
A P PR e A PR
dt |9l l91g l9lg

Hence we can conclude that both Frobenius endomorphism and derivation extend to the field E,.

1.3 p-adic Frobenius structure

Let A € Q(t)" ™. Observe that if U(t) is a solution to 2 = AU then V(t) = U(tph) is a solution of
av :phtph_lA(tph)V

dt
Definition 5. A p-adic Frobenius structure of period h for the differential system & W = AU is a matrix
® € GL,(Ep) satisfying the differential equation

d@ t 3

PO _ awa - e amae’. 2)

When h =1 we simply call ® a p—adic Frobenius structure

au _ 1
dt T 21—t

erty (ii) from §l existence of a p-adic Frobenius structure for a system of rank 1 is equivalent to the fact
that ®(t) = U(t)/U(t?) is a p-adic analytic element. Let us check that this is indeed the case for our system
when p # 2. We first perform a formal computation:

Uy  [i-w e [1-tp po(t) \? 11—t — (1—t)P
) =y -t (1—t)y <1+(1t)1’> with g(t) = Sy

1/2 g(t)*
=(1-t" Z< . >pk(1_t)pk.

k=0

1

Example 6. Consider U The unique solution is given by U(t) = it In the view of prop-

Here for k > 2 we have

(1/2) _ 2021 (/2= (k=) a3 (k=)
k k! 9k k!

L @k-3) SN 2k =2
= (-1)* m:(—l)k 2%—2(%_2)( k )

from which it clearly follows that the p-adic valuation of (1/2)p grows infinitely as k — oco. Thus the partial
sums of the series representation we computed above will give a Cauchy sequence with respect to the Gauss
norm. It limit will represent ®(t) = U(t)/U(t*) as an element of E,.

Now we would like to mention several facts about p-adic convergence of solutions of differential systems.
The reader may prove the following proposition as an exercise, or consult [I9] where this fact is proved in a
more general context.

Proposition 7 (p-adic Cauchy theorem, Elisabeth Lutz). Suppose the entries of A € Qu[t]™™*™ have a
positive radius of p-adic convergence. Then there exists an invertible matric U € GL,(Q,[t]) such that
CiTlt] = AU. This matriz is unique up to multiplication from the right by constant invertible matrices C €

GL,(Qp) and entries of U have a positive radius of p-adic convergence.



Existence of a p-adic Frobenius structure implies that the radius of p-adic convergence of solutions is at
least 1:

Theorem 8 (Dwork). If A € Q(¢)"*"™ has no poles in the p-adic disk |t|, < 1 and has a Frobenius structure,
then the fundamental matriz of solutions to % =AU, U € Q,[t]"*™, also converges for |t|, < 1.

Here is a negative example: the rank 1 differential system % = U has no p-adic Frobenius structure for any

prime p. This fact follows from the above theorem because the solution U(t) = exp(t) has radius of p-adic
convergence p_ﬁ < 1. One can also give a direct argument, not involving Dwork’s theorem. Instead,
demonstrate that exp(t — t?) is not a p-adic analytic element. See exercise X below.

In the situation of Proposition [7| we can conclude from (ii) of § that the differential equation (2) defining
the Frobenius structure has n*-dimensional Q,-vector space of solutions ® € Q,[t]"*"™ given by ®(t) =
U(?ﬁ)AU(?ﬁph)_1 with any A € Qp*". Their entries have a positive radius of p-adic convergence, and we can
ask for which A we actually get entries in E,. The following theorem tells us that if such A exists it is unique
up to a scalar multiple.

Theorem 9 (Dwork, [14]). Let A € Q(t)"*™ and suppose that the differential system T = AU satisfies the
following properties:

e all its singularities are regular,

all local exponents are in QN Zy,

the difference of any two singularities has p-adic valuation 0,
o it is irreducible over Qp(t).
Then if a p-adic Frobenius structure exists, it is unique up to multiplication by a non-zero constant.

In these lectures, we will discuss the existence of a p-adic Frobenius structure and its arithmetic consequences.

1.4 The case of differential equations

For a monic linear differential operator

L= 0y a® (bt ant) € Q)

4
dt

its companion matriz is defined as

0 1 0
0 0 1
A(t) =
—Qp  —0n-1

au

Then vector solutions to the differential system - = AU are precisely of the form

U(t) = (y(6),y' (), ...y D (@0)7,

where y(t) is a solution to Ly = 0. We would like to consider the cases when L is regular at t = 0
(so all a;(t) are analytic at ¢ = 0) or ¢t = 0 is a regular singularity (which happens when for each i the
coefficient a;(¢) has a pole of order at most ¢ at t = 0, see [7]). Both for the analysis of singularity at
t = 0 and for describing the Frobenius structure near this point it is convenient to rewrite the differential
equation in terms of the derivation 6 = t%. Multuplying our operator on the left by t™ and using formula
ti(d/dt)' =00 +1)...(0 +i— 1) we may assume that

L=0"+b()0" ... +b,(t)



with all b; analytic at £ = 0. Recall that local exponents at t = 0 are the roots of the indicial polynomial
X" +b1(0) X" 1+ ...+ b,-1(0)X + b,. The companion matrix will be

0 1 0
0 0 1
B(t) =
_bn _bnfl

and solutions to U = BU are of the form U(t) = (y,0y,...,0" y)T.
Denote ¢ = p" and consider the operator

L@ — Z bi(tq)qien_i.
i=0

Since 0% (y(t?)) = ¢*(8%y)(t?), this is the operator whose solutions are given by y(t9) where y(t) is a solution
to L. Note that L(® has regular singularity at t = 0 with indicial polynomial Z?:o b;(0)g* X%, and hence
its local exponents are g-multiples of the local exponents of L. The equation for the Frobenius structure of
period h now transforms into

0D(t) = B(t)®(t) — q®(t) B(t?). (3)
Assume that the local exponents of L at ¢ = 0 are rational and let d be the least common multiple of their

denominators. We denote by
Sol(L) € Qp[t][t~"/*, log(1)]

the n-dimensional Q,-vector space generated by solutions of L. Similarly, we have the Q,-vector subspace
Sol(L(9)) and the isomorphism Sol(L) — Sol(L(9)) given by t — t* and log(t) — plog(t).

Proposition 10. Let L be a differential operator of order n and t = 0 is a regular singularity of L with
rational local exponents. The following conditions are equivalent:

(i) There exists a solution ® to with entries ®;; € E, N Q,[t].

(i) There exists an invertible linear map A : Sol(L\D) — Sol(L) given by a differential operator A =
S A (4)87 with coefficients A; € B, 0 Qp[t].

Proof. (i)=(ii) Let y be a solution to L(y) = 0 and U(t) = (y,0y,...,0" ty)T. Then ®#)U(t?) =
(9,07, ...,0" 15T for some solution § € Sol(L). Here

J0) = 3 @ )17) = 3 oy (6)g 96 (4(17)),
j=0 Jj=0

and hence we obtain a differential operator between the spaces of solutions
n—1 ) .
A= "q7%;67: Sol(L'?) - Sol(L).

Jj=0

To show that this operator is invertible we choose any basis yg, . .., yn—1 € Sol(L). Then y;(t?), 0 <i<n-—1
is a basis in Sol(L(@. Let U = (0'y;)o<i,j<n—1 and let U= (09j)o<i,j<n—1 be a similar Wronskian matrix
for the images 7; = A(y;(t9)). Since U(t) = ®(t)U(t?), we obtain that the Wronskian determinant of the
images in non-zero

W (o, -+ Gn_1) = det(U) = det ® - det U # 0,
and hence these solutions are linearly independent.
(ii))=(i) Let A = Z?:_Ol A;(t)07 be an invertible linear map between the spaces of solutions. For 0 <i <n—1
we consider the reminder from right-division of ?A by L(?) in the algebra (E, N Q,[t])[d]:

n—1
A= Ay(t)07 +B; - L. (4)

J=0



Consider matrix ® with entries ®;; = ¢/ A;; € E, N Qp[t]. Let yo,...,yn—1 be a basis in Sol(L). Consider
the constant matrix A € GL,,(Q,) given by

yj tq Z yk )\k]

Applying 6 to this identity we find that

ZAW M) = S OOy e BOUE) = UDA.
k=0

We obtain that ®(¢) = U(t)AU(t?)~! and therefore it is invertible and satisfies the differential equation (3)).
O

We would like to note that the entries of ® and A in the above proposition were assumed analytic at t = 0
in order to have the possibility of multiplication with elements of Sol(L). We could have also assumed that
the entries of ® and A have a pole of finite order at ¢ = 0, that is belong to E, N Q,((¢)).

Remark 11. In the situation of Proposztwn. the product L o A is right-divisible by L@ m the algebra
(E, NQu[t)[0]. Indeed, let B =3"1" bi(t)0" be the remainder from division of —0™A by LD on the right.
Put B = (bi(t)) € (QptINE,)™ and conszder the vector C = (AT)"'B where A = (A;j) is the matriz defined

in (). Its coordinates satisfy > i, et JAi;(t) = b;(t) and therefore

(9% n nz_: ci(t)9i> o A
=0

is right- divisible by L. Since A : Sol(L\9) — Sol(L) is invertible, we can conclude that the operator
=0"+37", cz( )0¢ annihilates all solutions of L. As L and L are monic of the same order, they must
be equal. Thus we obtain that Lo A= Lo A is right-divisible by L9

1.5 Existence of Frobenius structure for rigid differential systems

Consider a differential operator

L = ao(t) <jt>n +ay(t) (i)n_l T an_l(t)% + an(?)

with a; € Q[t] and ag # 0. Let S = {t1,...,t,} C P}(C) be the singularities of L. This set consists of
the roots of ag(t) and possibly the point at infinity. Let to € P1(C) \ S be a regular point and V be the
n-dimensional C-vector space of solutions of L near ty. Consider the monodromy representation

p: ﬂl(]P’l((C) \ S, to) = GL(V)

and assume that it is irreducible. Let v1,...,v, € w1 (P*(C)\ S,t9) be simple loops around ty,...,t,
satisfying the relation ;- ..., = I. Then linear transformations M; = p(~;) (local monodromies) also
satisfy My-...-M, = 1. An 1rreduc1ble tuple My, ..., M, satisfying the relation My -...- M, = I is called rigid
if for any tuple My, ..., M, such that M; = U; M, U 1 for all ¢ with some U; € GL( ) and My -...- M, =1,
there exists a matrix U € GL(V) such that M; = U MU~ for all i simultaneously. If this condltlon holds
for our tuple of monodromy operators M; = p(~y;) then we say that the monodromy of L is rigid.

Let us recall a criterion of rigidity:

Theorem 12 (Katz, [18]). Let My,..., M, € GL,(C) be an irreducible tuple satisfying the relation My - .. .-
M, = I. Denote §; = codimc{A € M, (C) : AM; = M;A}. Then

(i) 8y +...+ 6, >2(n?—1),



(i) the tuple is rigid if and only if 51 + ...+ 0, = 2(n? — 1).

We now state the theorem on the existence of p-adic Frobenius operators for rigid Fuchsian operators.
Theorem 13 (Vargas-Montoya, [22]). Let L € Q(¢)[d/dt] and suppose that

(i) L is Fuchsian,

(ii) exponents of L are rational numbers,

(i4i) the monodromy of L is rigid.

Then there exist an integer h > 0 such that L has a p-adic Frobenius structure of period h for almost all
primes p.

Remark 14. (i) The construction of the integer h > 0 and the set of primes numbers p such that L has a
p-adic Frobenius structure are also given in [22, Theorem 3.8].

(i) Dwork conjectured in [13] that (i) and (ii) are sufficient for L to have a p-adic Frobenius structure for
almost all primes p.

Results similar to Theorem [I3] were also obtained by Crew and Esnault-Groechenig circa 2017. One of the
advantages of Daniel’s approach is that h and the set of bad primes are determined explicitly. Namely, let
d be the least common multiple of denominators of all local exponents of L and P(t) be the least common
multiple of denominators of the rational coefficients aq(t),...,a,(t). Then h = hihy with by = ¢(d) and hs
is the dimension of the splitting field of P(t) over Q. Operator L then has a p-adic Frobenius structure of
period h for every prime p for which

e all local exponents are p-integral (< p1d)
o |a;(t)|lg <lfori=1,...,n
e the difference of any two singularities has p-adic valuation 0

The reference for this is [22] Theorem 7).

2 Exercises

2.1 Amice ring

For every prime number p, the Amice ring is defined as follows
A, = {Z ant”™ 1 an, € Qp, lim la,lp, =0 and sup|a,|, < oo} :
n——oo nez
nez

For every f =) ., ant™, we set
|flg = sup |an,.
ne”Z

(i) Prove that | |g is a norm. This norm is called the Gauss norm.
(ii) Prove that A, is complete with respect to the Gauss norm.

(iii) Prove that Q(¢) C A, and show that

_max; |aglp

>, ait’
Zj bjtj

Conclude that E, C A,, where E, is the p-adic closure of Q(t) called the field of p-adic analytic
elements.

g max; |b;],



(iv) Show that A, is a field.

Remark: Usually, the Amice ring is defined with coeflicients in C,, in which case it is not true that
every non-zero element is invertible. It is essential for this exercise that the Gauss norm is discretely

valued on A,.

(v) Show that if f = ano anz™ € A, has radius of convergence greater than 1 then f € E,,.

2.2 Hypergeometric Frobenius structures

A generalized hypergeometric differential operator of order n > 1 is given by

=048 —1)O+Br—1). . (0+Bu—1)—t(0 — ) ... (0 — an), H—t%

with some complex numbers ay, ..., a&n, 81,-- -, B8,- This is a Fuchsian operator with singularities at 0, 1, co.

The local exponents read
1—Bi,....1—B, at t=0,
Ay ...y Qp at t=o00

1,2,....n—1,-1+» (Bi—a;) at t=1.

The monodromy representation of L is known to be irreducible if and only if a; — 8; ¢ Z for all ¢, .
In his thesis in 1961 Levelt gave a beautiful explicit proof of rigidity of monodromy groups of irreducible
hypergeometric monodromy operators (see [6, §1.2]).

(i) Check that an irreducible hypergeometric differential equation satisfies Katz’ criterion of rigidity given
in Theorem [[21

(ii) Suppose that o, 5; € Q and o; — B; ¢ Z for all 4, j. Then the hypergeometric operator L satisfies the
conditions of Theorem Compute the order of this Frobenius structure and the set of primes for
which it exists using the recipe given after Theorem

2.3 p-adic analytic continuation

Let us consider the hypergeometric series

2
f(t) = 2F1(1/2,1/2,1;t) = Z (14'22)71 n

n>0

Dwork has shown in his ”p-adic cycles” paper that, for all p > 2, the quotient (¢)/§(t?) belongs to E,. More
precisely, he showed that for all p > 2 and s > 1

ft) _ fs() mod p°  with  f4( Z

f(tp) B fs—l(tp)

(i) Show that the p-adic radius of convergence of §(¢)/f(¢?) is 1 for any p > 2.

(ii) Consider the region
D={yeZy:[(ylp =1}

and check the following facts:
(a) {y€Zy: |yl <1} C D, and if y € D then y? € D;
(b) for every s > 0 one has |fs(y)|, =1 when y € D;



(c) the sequence of rational functions fs(y)/fs—1(y?) converges uniformly in D, and if we denote the
limiting analytic function by w(y) = lims_e0 fs(y)/fs—1 () then for all s > 1

fs(y)
wy) - fs—1(yP)

(d) §(t)/f(t?) is the restriction of w(t) to {y € Zy : |y|, < 1}.

sup <

yeD

1 .
E7

Remark: The above procedure of analytic continuation allows to evaluate w(y) at points y € /i
X

such that [f(y)|, = 1. Dwork also noted that the value w(yo) at a Teichmuller units yo € Z), Yt =1
is equal to the p-adic unit root of the elliptic curve y* = x(x — 1)(x — 7,) where 7, is the reduction of
yo modulo p. The condition |f1(yo)|, = 1 chooses the ordinary elliptic curves in the Legendre family.
A vaste generalisation of the above Dwork’s congruences along with the evaluation of the respective
p-adic analytic element is given in "Dwork crystals II” by Beukers-Vlasenko (see Theorem 3.2 and
Remark 4.5).

Argue that the sequence of rational functions f,(t)/fs—1 (") converges in the Gauss norm, and hence
w(t) € E,
p-adic Frobenius structure for differential equations of rank 1

Prove that, for any p > 2, the differential operator

da @)
dt  §(t)

has a p-adic Frobenius structure of period 1. Here § is the hypergeometric function considered in the
previous set of exercises.

Let L = d/dt — a(t) be a differential operator with a(t) € Q(¢). Prove that if L has a p-adic Frobenius
structure for almost all primes p then a(t) = f/(¢)/f(¢) with f(¢) € Q[[t]] algebraic over Q(t). Is the
converse true?

Hint: Use the fact that the Grothendieck-Katz p-curvature conjecture holds for operators of rank 1.
Prove that the differential equation d/dt — 1 does not have a p-adic Frobenius structure for any p.

Let 7, be in Q such that 7T£_1 = —p. Prove that d/dt — m, has a p-adic Frobenius structure.

Remark: A. Pulita in his work Frobenius structure for rank one p-adic differential equations gives a
characterization of the differential operators of rank 1 having a p-adic Frobenius structure for given p.

Algebraicity of G-functions modulo p

Let K be a field and let f(t) be a power series with coefficients in K. We say that f(¢) is algebraic over
K (t) if there exists a nonzero polynomial P(Y) € K (t)[Y] such that P(f) = 0. Otherwise, we say that f(t)
is transcendental over K (t).

Given a prime number p, Z ) is the localization of Z at prime ideal (p). In other words,

Zipy = {% €Q| (a,b) =1, (p,b)=1}.

In particular, the elements of the ring Z,) can be reduced modulo p and the residue field of Z,) is I, the
field with p elements.

For a power series f(t) =), <, ant" € Zy)[[t]], the reduction modulo p of f(z) is the power series

fip(t) = Z(an mod p)z" € Fp[[¢]].

n>0



Definition 15 (Algebraicity modulo p). Let f(t) be a power series with coefficients in Q. We say that f(t)
is algebraic modulo p if:

1. we can reduce f(t) modulo p, that is, f(t) belongs to Zyy)[[t]],

2. the reduction of f(t) modulo p is algebraic over Fy,(t), that is, there exits a nonzero polynomial P(Y') €
F,(t)[Y] such that P(fy,) = 0.

If f(t) € Q[[t] is algebraic modulo p, the algebraicity degree of fi,(t), denoted deg(f),), is the degree of the
minimal polynomial of fi,(#) or equivalent

deg(fip) = Fp()(f1p) : Fp(t)]-

3.1 p-adic Frobenius structure implies algebraicity of solutions modulo p

Theorem 16 (Vargas-Montoya,[22]). Let L € Q(t) [4] be a differential operator of order n and f(t) € Q[[t]]
be a solution of L. If f(t) € Zyl[[t] and L has a p-adic Frobenius structure of period h then f(t) is algebraic

modulo p and deg(f,) < .

Proof. Let A be in M, (Q(¢)) the companion matrix of L. Since L has a p-adic Frobenius structure of period

h, by Proposition there exists A = Z?z_ol A;(t) (%)i €k, [%] such that, for every solution y(t) of L, the
composition A(y(tph)) is a solution of L. Consider V :={g € A,, Lg = 0}. It is clear that V is a Q,-vector

space. Further, the vector f(t) € V because f(t) € Z,) and Lf = 0. We then put

PV =V
7 A(y(t"))

So v is a Qp-linear map. Since dimg, V' = r < n, from Cayley-Hamilton theorem we get that there are
€o,...,cr—1 € Qp such that
Y e 0" e e = 0. (5)

Let Z be the E,, vector space generated by the elements of the following set {f) (tpih) :j€{0,...,n—1},i €
nrh

N}. From the equality (5) we conclude that Z has dimension less or equals than nr. Since f(2),..., f(zP ) €
Z, there are j < nr and by, ...,b; € E, such that

jh (j—1)h

bj(t)f(tp )+ bj71<t)f(tp

Let b;(t) such that |b;(t)| = max{|bo(t)|,...,|b;(t)|} and define ¢;(t) = b;(t)/bi(t). Then, for alli € {0,...,},
lei] <1 and

)+ +bo(t)f(t) =0.

(G—1)h

O FE") + o (0 FE) - eot) f() = 0.

We set d;(t) = c;(t), where ¢;(t) is the reduction of ¢;(t) modulo the maximal ideal of ¥g,. Then, for all
ie{l,...,7}, di(t) € Fp(z),

ih (j=1Dh

di(O)(fip (7)) + dja () ) + -+ do(t) fp(£) = 0 (6)
and do(t),...,d;(t) are not all zero because 1 = max{|co(t)],...,|c;j(t)]}. As j < nr < n? and F, has
characteristic p, from (6)) one gets that f,(t) is algebraic over F,,(¢) and that deg(f},) < ph O

We now introduce the following sets
Algmod = {f(t) € Q[[t]] | f is algebraic modulo p for infinitely many primes p}

Fs={f(t) € Q[[t]] | f(t) is solution of a differential operator L having Fs for almost all primes p}
Fs* = {f(t) € Q[[t]] | f(t) € Fs and f(t) € Z,[[t] for infinitely many primes p} .

10



As a consequence of Theorem we have

Fs* C Algmod.

2
As an example let us consider f2(t) =3, < (27?) t". This power series is solution of the differential operator

62 —162(0 +1/2)°.

According to Exercise this differential operator has a p-adic Frobenius structure for all p > 2 of period
1. Then, from Theorem f2(t) is algebraic modulo p and deg( fy),,) < p? for all p > 2.

Remark 17. The power series f(t) is transcendental over Q(t). Nevertheless, fj2(t) is algebraic over Fy(t)
for all p > 2.

The following inclusion will be proven in Theorem
Fs C G-functions,

where G-functions is the class of G-functions introduced by Siegel in 1929. In addition, a famous conjecture
due to Bombieri and Dwork suggests that

G-functions C Fs.
Furthermore, Adamczewski and Delaygue recently conjectured that
G-functions® C Algmod,

where G-functions™ is the set of the power series f(t) € Q[[t]] that are G-functions and there exists an
infinite set S of prime numbers such that, for all p € S, f(t) € Z)[[t]].

We are going to see that the Adamczewski-Delaygue’s conjecture is true for many of G-functions, namely,
diagonals of algebraic power series and hypergeometric series , F,,_1 with rational parameters.

3.2 G-functions
We say that f(t) = >_,~,ant" € Q[[t]] is a G-functions if:
(i) there exists a nonzero differential operator L € Q(t) [4] such that L(f) =0,

(i) there exists C' > 0 such that |a,| < C™*! for all n > 0,

(iii) there exists D > 0 and a sequence of integers D,, > 0 with D,, < D™*! such that D,,a, € Z for all
n <m.

The main examples of G-functions are given by diagonals of algebraic power series and hypergeometric series
nFn_1 with rational parameters.

3.2.1 Diagonals

Let K be any field. For every integer n > 1, we define the diagonalisation operator

Ay K[t ] — K[[t]
> alin, i)ttt = > a1,
S\ j>0
where K{[t1,...,t,]]"" = K[[t1,...,ta]] N K(t1,. .., ts).

Definition 18. We say that f(t) € K[[t]] is a diagonal of a rational function if there are an integer n > 0
and F € K[[t1,...,t,)]"* such that
AL (F) = f.

11



We put
Diagi?" = {f(t) € K[[t]] | f(t) is a diagonal of a rational function } .

For example, the power series f2(t) = >_, 5 (2:)21&” belongs to Diagy™ because Ay(R(t1, ... 1)) = f2(t),

whit
1 i1+i2><733+i4>i io4is i
R(t1,...,ts) = = , , thlglagia
(t 4) (1= t1)(1 — t2)(1 — t3)(1 — tg) > ( i g ) 128

(i1,i2,i3,54)EN*

The generating power series of Apéry’s numbers

-2 (50 (1))

is the diagonal of the following rational function

1
(1 — titotata][(1 —t1)(1 —ta) — to(1 +t1)(1 +t2)]

Theorem 19 (Furstenberg [16]). Let K be a field of characteristic p > 0. If f(t) € Diag™™ then f(t) is
algebraic over K (t).

This result was extended by Deligne to diagonal of algebraic power series. We say that f(t) € K[[t]] is a
diagonal of an algebraic power series if there are n > 0 and F € K[[t1,...,t,]]*9 such that A, (F) = f,
where K[[t1,...,t,]]*9 is the set of power series in K[[ty,...,t,]] that are algebraic over K(t1,...,t,). We

then put

Diag? = {f(t) € K[[t]| f(t) is a diagonal of an algebraic power series} .

It is clear that Diag™® c Diag®.

Theorem 20 (Deligne [I1]). Let K be a field of characteristic p > 0. If If f(t) € Diag™ then f(t) is
algebraic over K (t).

In the following proposition we state some properties of the set Diag®?.
Proposition 21. The following statements hold.

1. For any field K, Diag;' = Diag’?.

2. If f(t) € Diag&at then f(t) is N-integral, that is, there exists ¢ € N > 0 such that f(cz) € Z][[t]].
Proof. 1. See [12, Theorem 6.2]

2. It is a direct consequence of 1.

Thanks to Proposition 21} Theorem [I9] and Theorem [20] are equivalent.
Theorem 22. The following inclusions hold:
1. Diag(ﬁ)at C Algmod,

rat

2. Diagy” C G-functions,

3. Diag{-ft C Fs*.

12



Proof. Let f(t) be in Diag(glt.
1. By 2 of Proposition 21} we get that f(t) € Z|[[t]] for almost all primes p. By assumption f = A,,(F') with
F e Q[[t1,...,ta]] N Q(t1,...,tn). So, for almost all primers p, F' € Zy(t1,...,t,). Since fj, = Ay (Fp),

we conclude that, for almost all primes p, fj,(t) € Diagﬁ;‘:t. Then, by Theorem we deduce that f(t) €
Algmod.

2. Tt is shown in [10] that f(¢) is a solution of a nonzero differential operator L € Q(t) [%}. Another proof
is given in [20]. The condition (iii) is satisfied because f(t) is globally bounded and the (ii) is also satisfied
because the radius of convergence of f(t) is not zero.

3. By [10], we know that f(¢) is solution of a Picard-Fuchs operator L € Q(t) [%]. Then, according to [19]
Theorem 22.1], L is equipped with a p-Frobenius structure for almost all primes p. Finally, 2 of Proposition
implies that f(t) € Z,)[[t] for almost all primes p. Hence f(t) € Fs™. O

For a G-function f(t), we let Sy denote the set of primer number p such that f(t) € Z,|[[t]]. According
to Theorem if f(t) € Diag@at then P \ Sy is finite, where P is the set of prime numbers. Deligne[l1]
proposed that the behaviour of deg(f),) with respect to p € Sy is polynomial in p. More precisely,
Deligne’s question:(Deligne[IT]) Let f(¢) be in Diag@at. Is there a constant ¢ > 0 such that, for all p € Sy,
deg(fip) < p°?

In the particular case of the power series fa(t), we can take ¢ = 4 because we have already seen that
deg(fapp) < p* for all p > 2. It was in 2013 that Adamczewski and Bell [I] gave an affirmative answer to this

question. Further, it is observed that in many examples, Deligne’s question has an affirmative answer for
G-functions which are not diagonals. For example, the hypergeometric series

o« /53,
0= 2 Gt

does not belong to Diag@at because h(t) is not N-integral. Nevertheless, Sy is the set of prime numbers p
such that p = 1 mod 35 and we have deg(h,) < p for all p € Sy.

The fact that Deligne’s question has an affirmative answer for many G-functions that are not diagonals led
Adamczewski and Delaygue to formulated the following conjecture

Conjecture 23. (Adamczewski-Delaygue’s conjecure) Let f(t) be a G-function such that Sy is infinite.
Then:

(i) fip is algebraic over F,(t) for almost all p € Sy,
(i) there exists ¢ > 0 such that, for all p € Sy verfying (i), deg(f),) < p°.

Thanks to Theorem [19(and [I]], this conjecture is true when f(t) belongs to Diag@at. Recently, this conjecture
was proven for another interesting class of G-functions, namely, hypergeometric series ,, F,,_1 with rational
parameters.

3.2.2 Hypergeometric series ,F,,_1

Given two vectors a = (a1, ..., ap) and 8= (B1,..., Bn-1,1) in (Q\ Z<o)™, the hypergeometric series with
parameters « and 3 is the power series

. (e (am)
Fn,l(a,,@,t) = j% Qaﬁ(])t with Qaﬁ(]) = (ﬂl)j(ﬂfm—l))ﬂw

where for a real number 2 and nonnegative integer j, (z); is the Pochhammer symbol, that is, (z)o = 1 and
(x); =x(x+1)---(z+7j—1) for j > 0. We denote by du g the least common multiple of the denominators
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of aq,...,a, and By,...,B,—1 written in lowest form. It is well-known that ,, F,_1(e, 3;2) is a solution of
the hypergeometric operator

n n

He B) = [[6+ 6 — 1) — 2 [[0 + o), with 6 = =&

dz
i=1 i=1

We put
HGS = {,F,—1(e,3,t) | withn >0 and o, 8 € (Q\ Z<0)"}.

We have the following inclusion
Theorem 24. HGS C G-function.

Proof. Let f(t) = pnFn-1(a,B,t) be in HGS. We know that f(¢) is solution of the differential operator
H(ex, B). So the condition (i) is verified. Condition (ii) and (iii) follows from [4, Lemma 4.4 Chp I] and [I5]
Proposition 1.1 Chp VIII] O

In [22], it was proven that the Adamcezwki-Delaygue’s conjecture is true for a lot G-functions in HGS. To
be more precise, we have

Theorem 25. ([22, Theorem 1.2]) Let f(t) = nFn_1(ca,B,t) € HGS such that 1 <i,j <n, o —B; ¢ Z
and let p a prime number such that for all 1 <i,5 <n, ||, <1 and |B;], < 1. If f(t) € Z,y)[[t] then f,(t)

is algebraic over Fy(t) and deg(f),) < p"z‘P(d"‘"a), where ¢ is the Euler’s Totient function.

Proof. We know that f(t) is solution of the differential operator H(a, 3). Given that, for all 1 < i,j < n,
lailp < 1, |Bjlp < 1 and oy — B; ¢ Z, it follows from first session that H(«a, 3) is equipped with a p-adic
Frobenius structure of period ¢(da,g). By assumption f(t) € Zy[[t] and thus, by Theorem Jip(t) is

algebraic over F,,(t) and deg(f},) < p™ #(des). R

Thanks to this theorem, the conjecture Adamcezwki-Delaygue’s conjecture is true for any f(¢t) € HGS,q,
where

HGSM'Q = {nFn_1(a,,6, t) | with n > 0, a,ﬂ (S (Q \ Zgo)n and V1 < i,j < n,o; — Bj ¢ Z} .

We finish this section by showing the inclusion Fs C G-functions. In order to prove this inclusion, we recall
the notion of the radius of convergence at generic point for a differential equation L € Q(t) [%]. Let A be
the companion matrix of L and let us consider the sequence of matrices {A;}s>0, where Ay is the identity

and Ay = Aand Az = %AS + A A. So, the radius of convergence of L at the generic point associated to

p is the real number r,(L) defined as follows

1/s
= lim ||=
rp( ) s—00

1 ‘ A

' .
S llg,p

It is not hard to see that r,(L) > 0. Moreover, according to Propositions 4.1.2, 4.6.4, 4.7.2 of [9], if L has a
p-adic Frobenius structure then r,(L) = 1.

Theorem 26. Fs C G-functions.

Proof. Let us take f(t) € Fs. Then f(t) is solution of a differential operator L having p-adic Frobenius
structure for almost all primes p. In particular, for almost all primes p, r,(L) = 1. Therefore Hp rp(L) >0
and, by [4, Theorem C p.3], we conclude that f(t) is a G-function.
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4 Algebraic independence of G-functions

An interesting consequence of the algebraicity modulo p of G-functions is that, in many cases, it allows
us to prove the transcendence and algebraic independence of G-functions. We recall that the power series
f1@), ..., fr(t) € Q[[t]] are algebraically independent over Q(t), if for any nonzero poylnomial P(Yy,...,Y,) €
Q) [Y1,..., Y], P(f1,..., fn) # 0. Otherwise, we say that fi(t),..., f.(t) are algebraically dependent over
Q).

It seems that Sharif and Woodcock were the first to use algebraicity modulo p to prove the transcendence
of certain G-functions. Indeed, in 1989 they proved [21] that, for all integers r > 2,

()= (2: ) i

n>0
is transcendental over Q(t). Their strategy is based on the following lemma.
Lemma 27. Let f(t) € Z[[t] be algebraic over Q(t). Then the sequence {deg(f,)}pep is bounded.

Thus, if f(t) is a power series with coefficients in Z such that the sequence {deg(f|,)}pep is not bounded
then f(t) is transcendental over Q(t). So, Sharif and Woodcock showed that, for all integers r > 2, the
sequence {deg(f,|p)}pep is not bounded. For do that, they used the fact f,.(¢) is p-Lucas for all primes p.

Definition 28. (p-Lucas congruences) Let f(t) = Y, <, ant™ be a power series in 1+ tQ[[t]]. We say that
f(t) is p-Lucas if: -

(i) f(t) can be reduced modulo p, taht is, f(t) € Zy |[[t]]
(ii) the reduction modulo p of f(t) satisfies the equality

f\p(t) = (Z(an mod p)ti> flp(t)p (7)

=0

For example, Gessel [I7] proved that 2((t) is p-Lucas for all primes p. In problem session we are going to see
that, for any r > 1, f,.(¢) is p-Lucas for all primes p.

In 1998, Allouche, Gouyou-Beauchamps and Skordev [3] generalized the approach introduced by Sharif and
Woodcock by giving a criterion for when a power series that is p-Lucas for all primes p is algebraic over Q(t).
Their result reads as follows

Theorem 29. Let f(t) be in Z[[t]]. Suppose that f(t) is p-Lucas for almost all primes p. Then f(t) is
algebraic over Q(t) if and only if there is a polynomial P(t) € 1+ tQ[t] the degree less than or equal to 2
such that f(t) = P(t)~1/2.

As a consequence of this result we can show that 2((¢) is transcendental over Q(¢). Let us suppose by
contradiction that 2A(¢) is algebraic over Q(¢). Given that 2(¢) is p-Lucas for all primes p then there is a
polynomial P(t) € 1+ tQ[t] the degree less than or equal to 2 such that (t) = P(t)~'/2. In particular, (t)

is solution of the differential operator

P(t)% + %P’(t).

But, it is well-known that the minimal differential operator for (t) over Q(t) is given by
d d d
1 =34t + )2 — + (3 — 153t + 6t°)t— + (1 — 112t + 7¢*)— — 5 + ¢.

Therefore, 2(t) is transcendental over Q(t). We can also use Theorem 29| to prove that f,(t) is transcendental
over Q(t) for r > 1 given that f,.(¢) is p-Lucas for all primes p and its minimal differential operator over Q(t)
is given by

0" —t(d+1/2)".
Recently, Adamczewski, Bell and Delaygue show how to use the relation to study the algebraic inde-
pendence of some power series. For this purpose, they introduce the set £(S), where S is a set of prime
numbers.
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Definition 30. Let S be a set of prime numbers. The set L(S) is the set of power series f(t) € 1+ tQ[[t]]
such that for everyp € S:

(i) f(t) € Zy)[[t]),
(i) there are polynomials Ap(t), Bp(t) € Fy(t) and a positive integer | such that

Filt) = e

(iii) the degrees of Ap(t) and B,(t) are less than Cp', where C is constant that does not dependent on p.

Remark 31. Let S be a set of prime numbers. If f(t) = Y, <, ant™ is p-Lucas for allp € S then f(t) € L(S).
Indeed, for every p € S, f(t) € Zy)[[t]] and -

p—1

Fpt) = Ap(O)fp () with A,(t) = 3 al,modp)™.

n=0
It is clear that the degree of A,(t) is less than p.
In [2], Adamczewski, Bell and Delaygue prove the following result

Theorem 32. Let S be an infinite set of prime numbers and let f1(t), ..., fr-(t) € L(S). Then, fi(t),..., fr(t)
are algebraically dependent over Q(t) if and only if there are aq,...,a, € Z not all zero such that

H@)* - @) € Q1)

By applying this theorem, the authors prove that all elements of the set {f,.(¢)},>2 are algebraically indepen-
dent over C(t) (see [2, Theorem 2.1]). In the same work they also show that many G-functions are p-Lucas
for infinitely many primes p. In order to do that, they study in detail the p-adic valuation of the coefficients
of the hypergeometric series and the power series obtained as specialization of factorial ratios. Furthermore,
in [23] the question of determining when a power series belongs to £(S) for an infinite set S of prime numbers
is addressed from the point of view of the p-adic Frobenius structure.

Before stating the main result of [23], we recall that D € Q(t)[%] is MUM at zero if zero is a regular singular
point of D and the exponents at zero of D are all zero. Finally, we recall that Cartier operator associated
to p is the Q-linear map A, : Q[[t]] — Q[[t]] defined as follows Ap(> "~ ant™) =3, >0 Anpt™-

Theorem 33. Let f(t) = >, 5¢ant™ be in Fs* and let Sy be the set of prime numbers p such that f(t) €
Zp[t]]. Suppose that f(t) is solution of a differential operator D € Q(t)[%] that is MUM at zero. Then:

1. there exist a constant C > 0 and a set " C Sy such that Sy \ S’ is finite and, for allp € S’,

Fiult) = )

where Ay (t), By(t) belong to Fy[t] and their degrees are bounded by Cp*.
2. Moreover, if for all p € Sy, Ap(fip) = fip then f(t) € L(S'), where " C Sy and Sy \ S’ is finite.

Theorem [33]is used in [23] to prove that a big class of G-functions are in £(S), where P\ S is finite. Mainly,
the author uses this theorem to show that the amongst the 400 power series appearing in [5] there are 242
that belong to £(S). Actually, according to some standard conjectures, it is expected that all power series
in [5] belong to Fs*.

In [23] it is also shown that some hypergeometric series do not belong to £(S) for any infinite set S of prime
numbers. For any r > 1, we consider the hypergeometric series

or(t) =Y 2n_i : (2:) t" € 1+ tZ[[t]).

n>0
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It is easy to check that g, (t) is not p-Lucas for any p > 2. Further, in [23] it is shown that if S is an infinite
set of prime numbers then go(t) ¢ £(S). The arguments given in [23] lead us to think that the same situation
is true for g,.(t) with » > 2. However, for any r > 1 the hypergeometric series g..(t) satisfies the assumptions
of Theorem [33| because g,-(t) is solution of the heypergeometric operator

" =16 —1/2)(6 +1/2)" "

It is clear that this operator is MUM at zero and, according to the first session, has a p-adic Frobenius
structure for all p > 2.

Consequently, we are not able to apply Theorem [32] to the set {g,(¢)},>2. So, this raises the problem of
giving an algebraic independence criterion for the power series that verify the assumptions of Theorem
Even if we do not yet have of such a criterion, it is shown in [23] the following results.

Theorem 34. (i) All elements of the set {g,(t)}r>2 are algebraically independent over Q(t).
(i) The power series go(t) and 2(t) are algebraically independent over Q(t).

5 Exercises

The goal of this problem session is to prove that f,.(t) = >, <, (2:)Tt” is transcendental over Q(t) following

the approach given by Sharif and Woodcock.

5.1 Diagonals

(i) Given two power series f(t) =), ~,t" and g(t) = >, <o = 2,50 Ont", the Hadamard product of f(t)
and g(t) is defined as follows: a a B

f(t)xg(t) = Z anbpt".

n>0

Prove that if f(¢) and g(t) belong to Diag;¢* then f(t) % g(t) belongs to Diag}?’*. Conclude that, for
all » > 1, f,(¢) belongs to Diagb‘”.

5.2 Algebraicity modulo p

According to Theorems |13| and flpr(t) is algrebaic modulo p for all p > 2 and deg(f,|,) < prg. In this
exercise we are going to prove that f.(t) is p-Lucas for all primes p.

(ii) Lucas’ Theorem. Let p be a prime number and n = >_7_,n;p’, m = >_7_, m;p’ be the p-adic expansion

expansion of n,m € N. Prove that
n = (g
() =) o
m - m;
=0

(ot2) = () () moar

for any a,b € N and any 0 < t,s < p.

(iii) Prove that

(iv) Let p > 2. Prove that
2(np+m)\" _
np +m o
(v) Conclude that f,.(t) is p-Lucas for all primes p and that P.(f,,) = 0 where

=172 o
— p—1 _ n
P(Y)=Y > ((n) modp)t

n=0

(2")T(2m)r modpsime€ {0,1...,(p—1)/2}

n m

Omodpsime{(p+1)/2,...,p—1}.
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5.3 Transcendence

(vi) Prove Lemma

(vii) Let N > 0 be a natural number. Then there exist infinitely many primes p such that if a divides p —1

thena =1,2 or a > N.

(viii) Let N > 0 be a natural number and let » > 2. Then there exists a primer number p such that

deg(frp) > N.

Hint: Let a = [K : F,,(t)], where K is the splitting field of P,(Y). Prove that a divides p — 1 and that
deg(fr|p) divides a.

In the previous approach, the fact that f,(t) is p-Lucas for all p > 2 is crucial for proving the transcendence
of f.(t), r > 2. However, in some cases we can prove transcendence without assuming p-Lucas condition.
For every r > 1, we consider the hypergeometric series

gr(t) =Y 27: : (2:) " € 1+ tZ[[t]).

n>0

(ix) Prove that gq(t) is algebraic.

(x) Prove that, for all » > 1, g,.(¢) is not p-Lucas for any p > 2.

(xi) Prove that, for all p > 2, g,(t) = Ap(2)f-(¢t)?, where A,(t) € F,[t] has degree less than p.

(xii

)
)
)

Prove that, for all p > 2, deg(g,|p) = deg(f,p)-

(xiii) Conclude that g,(t) is transcendental over Q(¢) for r > 1.
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